Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.863
Filtrar
1.
Phytomedicine ; 127: 155494, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471370

RESUMO

BACKGROUND: Parkinson's disease (PD), a neurodegenerative disorder, is characterized by motor symptoms due to the progressive loss of dopaminergic neurons in the substantia nigra (SN) and striatum (STR), alongside neuroinflammation. Asiaticoside (AS), a primary active component with anti-inflammatory and neuroprotective properties, is derived from Centella asiatica. However, the precise mechanisms through which AS influences PD associated with inflammation are not yet fully understood. PURPOSE: This study aimed to explore the protective mechanism of AS in PD. METHODS: Targets associated with AS and PD were identified from the Swiss Target Prediction, Similarity Ensemble Approach, PharmMapper, and GeneCards database. A protein-protein interaction (PPI) network was constructed to identify potential therapeutic targets. Concurrently, GO and KEGG analyses were performed to predict potential signaling pathways. To validate these mechanisms, the effects of AS on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice were investigated. Furthermore, neuroinflammation and the activation of the NLRP3 inflammasome were assessed to confirm the anti-inflammatory properties of AS. In vitro experiments in BV2 cells were then performed to investigate the mechanisms of AS in PD. Moreover, CETSA, molecular docking, and molecular dynamics simulations (MDs) were performed for further validation. RESULTS: Network pharmacology analysis identified 17 potential targets affected by AS in PD. GO and KEGG analyses suggested the biological roles of these targets, demonstrating that AS interacts with 149 pathways in PD. Notably, the NOD-like receptor signaling pathway was identified as a key pathway mediating AS's effect on PD. In vivo studies demonstrated that AS alleviated motor dysfunction and reduced the loss of dopaminergic neurons in MPTP-induced PD mice. In vitro experiments demonstrated that AS substantially decreased IL-1ß release in BV2 cells, attributing this to the modulation of the NLRP3 signaling pathway. CETSA and molecular docking studies indicated that AS forms a stable complex with NLRP3. MDs suggested that ARG578 played an important role in the formation of the complex. CONCLUSION: In this study, we first predicted that the potential target and pathway of AS's effect on PD could be NLRP3 protein and NOD-like receptor signaling pathway by network pharmacology analysis. Further, we demonstrated that AS could alleviate symptoms of PD induced by MPTP through its interaction with the NLRP3 protein for the first time by in vivo and in vitro experiments. By binding to NLRP3, AS effectively inhibits the assembly and activation of the inflammasome. These findings suggest that AS is a promising inhibitor for PD driven by NLRP3 overactivation.


Assuntos
Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Triterpenos , Camundongos , Animais , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/metabolismo , Neuroproteção , Doenças Neuroinflamatórias , Simulação de Acoplamento Molecular , Microglia , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
2.
J Agric Food Chem ; 72(11): 5734-5745, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38453725

RESUMO

Parkinson's disease (PD) is marked by the degeneration of dopaminergic neurons of the substantia nigra (SN), with neuroinflammation and mitochondrial dysfunction being key contributors. The neuroprotective potential of folic acid (FA) in the dopaminergic system of PD was assessed in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model. MPTP (20 mg/kg of body weight) was administered to C57BL/6J mice to simulate PD symptoms followed by FA treatment (5 mg/kg of body weight). Behavioral tests, pole, rotarod, and open-field tests, evaluated motor function, while immunohistochemistry, ELISA, RT-qPCR, and Western blotting quantified neuroinflammation, oxidative stress markers, and mitochondrial function. FA supplementation considerably improved motor performance, reduced homocysteine levels and mitigated oxidative damage in the SN. The FA-attenuated activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome lessened glial cell activity and reduced neuroinflammation. At the molecular level, FA reduced DNA damage, downregulated phosphorylated p53, and induced the expression of peroxisome proliferator-activated receptor α coactivator 1α (PGC-1α), enhancing mitochondrial function. Therefore, FA exerts neuroprotection in MPTP-induced PD by inhibiting neuroinflammation via NLRP3 inflammasome suppression and promoting mitochondrial integrity through the p53-PGC-1α pathway. Notable limitations of our study include its reliance on a single animal model and the incompletely elucidated mechanisms underlying the impact of FA on mitochondrial dynamics. Future investigations will explore the clinical utility of FA and its molecular mechanisms, further advancing it as a potential therapeutic for managing and delaying the progression of PD.


Assuntos
Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Neurônios Dopaminérgicos , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/metabolismo , Doenças Neuroinflamatórias , Proteína Supressora de Tumor p53/metabolismo , Camundongos Endogâmicos C57BL , Doença de Parkinson/genética , Mitocôndrias/metabolismo , Peso Corporal , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia
3.
Neurochem Int ; 175: 105700, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38417589

RESUMO

Currently, there is no effective treatment for Parkinson's disease (PD), and the regenerative treatment of neural stem cells (NSCs) is considered the most promising method. This study aimed to investigate the protective effect and mechanism of NSCs on neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced cynomolgus monkey (Macaca fascicularis) model of PD. We first found that injecting NSCs into the subarachnoid space relieved motor dysfunction in PD cynomolgus monkeys, as well as reduced dopaminergic neuron loss and neuronal damage in the substantia nigra (SN) and striatum. Besides, NSCs decreased 17-estradiol (E2) level, an estrogen, in the cerebrospinal fluid (CSF) of PD cynomolgus monkeys, which shows NSCs may provide neuro-protection by controlling estrogen levels in the CSF. Furthermore, NSCs elevated proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a), mitofusin 2 (MFN2), and optic atrophy 1 (OPA1) expression, three genes mediating mitochondrial biogenesis, in the SN and striatum of PD monkeys. In addition, NSCs suppress reactive oxygen species (ROS) production caused by MPTP, as well as mitochondrial autophagy, therefore preserving dopaminergic neurons. In summary, our findings show that NSCs may preserve dopaminergic and neuronal cells in an MPTP-induced PD cynomolgus monkey model. These protective benefits might be attributed to NSCs' ability of modulating estrogen balance, increasing mitochondrial biogenesis, and limiting oxidative stress and mitochondrial autophagy. These findings add to our understanding of the mechanism of NSC treatment and shed light on further clinical treatment options.


Assuntos
Intoxicação por MPTP , Células-Tronco Neurais , Doença de Parkinson , Animais , Humanos , Macaca fascicularis/metabolismo , Intoxicação por MPTP/terapia , Intoxicação por MPTP/metabolismo , Células-Tronco Neurais/metabolismo , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos , Dopamina/metabolismo , Estrogênios/farmacologia
4.
Exp Neurol ; 375: 114724, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365133

RESUMO

Increasing evidence has shown that mitochondrial dysfunction and iron accumulation contribute to the pathogenesis of Parkinson's disease (PD). Nedd4 family interacting protein 1 (Ndfip1) is an adaptor protein of the Nedd4 E3 ubiquitin ligases. We have previously reported that Ndfip1 showed a neuroprotective effect in cell models of PD. However, whether Ndfip1 could protect dopaminergic neurons in PD animal models in vivo and the possible mechanisms are not known. Here, our results showed that the expression of Ndfip1 decreased in the substantia nigra (SN) of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mouse model. Overexpression of Ndfip1 could improve MPTP-induced motor dysfunction significantly and antagonize the loss of dopaminergic neurons in the SN of MPTP-induced mice. Further study showed that overexpression of Ndfip1 might protect against MPTP-induced neurotoxicity through regulation of voltage-dependent anion-selective channel (VDAC). In addition, we observed the downregulation of Ndfip1 and upregulation of VDAC1/2 in 1-methyl-4-phenylpyridinium ion (MPP+)-induced SH-SY5Y cells. Furthermore, high expression of Ndfip1 in SH-SY5Y cells inhibited MPP+-induced increase of VDAC1/2 and restored MPP+-induced mitochondrial dysfunction. Furthermore, Ndfip1 prevented MPP+-induced increase in the expression of long-chain acyl-CoA synthetase 4 (ACSL4), suggesting the possible role of Ndfip1 in regulating ferroptosis. Our results provide new evidence for the neuroprotective effect of Ndfip1 on dopaminergic neurons in PD animal models and provide promising targets for the treatment of iron-related diseases, including PD.


Assuntos
Ferroptose , Intoxicação por MPTP , Doenças Mitocondriais , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Ferro/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/patologia
5.
Eur J Pharmacol ; 962: 176234, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38043777

RESUMO

The study was performed to evaluate the neuroprotective effects of Benfotiamine (BFT) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) in rats. The rats were given daily doses of BFT (100 mg/kg, 200 mg/kg) through oral administration for 42 days. The rats were given a single bilateral dosage of MPTP (0.1 mg/nostril) intranasally once before the drug treatment to induce PD. On day 42, the animals were subjected to various behavioral paradigms. Post-treatment with BFT for 42 days significantly improved the motor and nonmotor fluctuations of MPTP. The results demonstrated that treatment with BFT ameliorated MPTP-induced disorders in behavior, body balance, and dopamine levels in the mid-brain. Among the post-treated groups, a high dose of BFT was the most effective treatment. Mean values are indicated in ±SEM, n = 5***(p < 0.001) when compared with the vehicle control, n = 5 ### (p < 0.001) when compared with the disease control; (p < 0.001) when compared with the BFT per se; (p < 0.001) when compared with the low dose of BFT; (p < 0.001) when compared with the high dose of BFT. Our finding suggests that BFT contributed to superior antioxidant, and anti-inflammatory and could be a novel therapeutic method for PD management. In conclusion, BFT could be a potential drug candidate for curbing and preventing PD.


Assuntos
Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Animais , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Administração Oral , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Intoxicação por MPTP/tratamento farmacológico
6.
Exp Neurol ; 373: 114642, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056584

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder characteristized by the presence of dyskinesia and the progressive loss of dopaminergic neurons. Although certain drugs can mitigate the symptoms of PD, they are unable to delay the disease progression, and their prolonged use may result in complications. Therefore, there exists an urgent necessity to identify potential agents that can effectively delay PD progression with fewer side effects. Recent research has unveiled that several traditional Chinese medicines (TCM) exhibit neuroprotective properties in various models pertinent to PD. Forsythoside A (FSA), the primary bioactive compound derived from TCM Lianqiao, has undergone extensive research in animal models of Alzheimer's disease and cerebral ischemia. However, the investigation into the impact of FSA on PD is limited in existing research. In this study, we aimed to evaluate the neuroprotective effects of FSA on MPTP-induced PD mouse model. FSA demonstrated significant improvements in the behavioral and neuropathological changes triggered by MPTP in mice. Furthermore, it exerted a suppressive effect on the activations of astrocyte and microglia. Meanwhile, Tandem mass tag (TMT)-based quantitative proteomics of striatal tissue and bioinformatics analysis were performed to elucidate the underlying mechanisms of FSA on PD mouse model. Proteomics demonstrated a total of 68 differentially expressed proteins (DEPs) were identified between HFSA and MPTP groups including 26 upregulated and 42 downregulated. Systematic bioinformatics analysis of the 68 DEPs illustrated that they were predominantly related to estrogen signaling pathway and calcium signaling pathway. The related DEPs (PLCß4, Grm2, HPAC and Cox4i1) expression levels were verified by Western blot. FSA effectively restored the altered expression of the four DEPs induced by MPTP. Summarily, FSA exerted remarkable neuroprotective effects in MPTP-induced mice. Further, our research may provide proteomics insights that contribute to the further exploration of FSA as a potential treatment for PD.


Assuntos
Medicamentos de Ervas Chinesas , Forsythia , Glicosídeos , Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Proteômica , Neurônios Dopaminérgicos/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
7.
Chem Biol Interact ; 387: 110820, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38016618

RESUMO

Baicalin, a potent anti-oxidative and anti-inflammatory flavonoid compound derived from Scutellaria baicalensis, has emerged as a neuroprotective agent. However, the mechanisms by which baicalin is neuroprotective in Parkinson's disease (PD) remain unclear. In this research, α-syn/MPP+ and MPTP were used to establish PD models in BV2 cells and C57BL/6 mice, respectively. The effect and mechanism of action of baicalin in PD were investigated by Western blotting, RT-qPCR, ELISA, Immunohistochemistry (IHC) staining, Immunofluorescence (IF) staining, HPLC and methods. Results demonstrate that baicalin mitigates oxidative stress, microglia activation and inflammatory response caused by α-syn/MPP+ and MPTP. It protects against dopaminergic neuron loss and relieves motor deficits. Meanwhile, baicalin not only significantly up-regulates the expression of Nrf2 and its downstream antioxidant enzyme, but also suppresses the activation of NLRP3 inflammasome simultaneously. Notably, the beneficial effects of baicalin in PD treatment are blocked by Nrf2 knockdown. This research reveals that baicalin may exert neuroprotective effects in PD treatment by suppressing the activation of NLRP3 inflammasome and it is dependent on the Nrf2-mediated antioxidative response.


Assuntos
Flavonoides , Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Antioxidantes/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Inflamassomos/metabolismo , Camundongos Endogâmicos C57BL , Microglia , Intoxicação por MPTP/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo
8.
J Neural Transm (Vienna) ; 131(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37851107

RESUMO

Over the years, evidence has accumulated on a possible contributive role of the cytosolic quinone reductase NQO2 in models of dopamine neuron degeneration induced by parkinsonian toxin, but most of the data have been obtained in vitro. For this reason, we asked the question whether NQO2 is involved in the in vivo toxicity of MPTP, a neurotoxin classically used to model Parkinson disease-induced neurodegeneration. First, we show that NQO2 is expressed in mouse substantia nigra dopaminergic cell bodies and in human dopaminergic SH-SY5Y cells as well. A highly specific NQO2 inhibitor, S29434, was able to reduce MPTP-induced cell death in a co-culture system of SH-SY5Y cells with astrocytoma U373 cells but was inactive in SH-SY5Y monocultures. We found that S29434 only marginally prevents substantia nigra tyrosine hydroxylase+ cell loss after MPTP intoxication in vivo. The compound produced a slight increase of dopaminergic cell survival at day 7 and 21 following MPTP treatment, especially with 1.5 and 3 mg/kg dosage regimen. The rescue effect did not reach statistical significance (except for one experiment at day 7) and tended to decrease with the 4.5 mg/kg dose, at the latest time point. Despite the lack of robust protective activity of the inhibitor of NQO2 in the mouse MPTP model, we cannot rule out a possible role of the enzyme in parkinsonian degeneration, particularly because it is substantially expressed in dopaminergic neurons.


Assuntos
Intoxicação por MPTP , Neuroblastoma , Camundongos , Humanos , Animais , Neurônios Dopaminérgicos/metabolismo , Substância Negra/metabolismo , Dopamina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
9.
Kaohsiung J Med Sci ; 39(10): 1002-1010, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37807941

RESUMO

Butyrate (BU), a gut microbiota-derived metabolite, has been reported to play a neuroprotective role in Parkinson's disease (PD). However, the specific molecular mechanism of BU has not been fully interpreted. This work aimed to verify the protective effects of BU against MPTP/MPP+ -induced neurotoxicity and explore the mechanisms involved. The results showed that BU protected against MPTP-induced motor dysfunction and decreased tyrosine hydroxylase (TH) and dopamine transporter (DAT) levels. Additionally, BU pretreatment improved PC12 cell viability and reduced MPP+ -induced PC12 cell apoptosis. BU treatment also attenuated MPP+ -stimulated oxidative stress and inflammatory response in PC12 cells. Furthermore, BU inhibited MPTP/MPP+ -induced hyperactivation of the JAK2/STAT3 signaling in mice and PC12 cells. Besides, a JAK2 agonist, Coumermycin A1 (C-A1), substantially reversed BU-mediated inhibition on JAK2/STAT3 phosphorylation in MPP+ -challenged PC12 cells and abated BU-induced repression on MPP+ -triggered apoptosis, oxidative stress, and inflammatory response in PC12 cells. To sum up, BU might exert neuroprotective effects against MPP+ /MPTP-induced neurotoxicity by inactivating the JAK2/STAT3 signaling.


Assuntos
Microbioma Gastrointestinal , Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Ratos , Camundongos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Butiratos , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais , Células PC12 , Camundongos Endogâmicos C57BL
10.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569538

RESUMO

Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson's disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD pathogenesis. However, molecular mechanisms of PD associated with GBA1 mutations (GBA-PD) are unknown today in particular due to the partial penetrance of GBA1 variants in PD. The modifiers of GBA1 penetrance have not been elucidated. We characterized the transcriptomic profiles of cells from the substantia nigra (SN) of mice with co-injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and selective inhibitor of GCase activity (conduritol-ß-epoxide, (CBE)) to mimic PD bearing GCase dysfunction (MPTP+CBE), mice treated with MPTP, mice treated with CBE and control mice treated with injection of sodium chloride (NaCl) (vehicle). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Functional clustering of differentially represented transcripts revealed more processes associated with the functioning of neurogenesis, inflammation, apoptosis and autophagy in MPTP+CBE and MPTP mice than in vehicle mice, with a more pronounced alteration of autophagy processes in MPTP+CBE mice than in MPTP mice. The PI3K-Akt-mTOR signaling pathway may be considered a potential target for therapy in PD with GCase dysfunction.


Assuntos
Intoxicação por MPTP , Doença de Parkinson , Transtornos Parkinsonianos , Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Camundongos Endogâmicos C57BL , Intoxicação por MPTP/patologia , Doença de Parkinson/patologia , Transtornos Parkinsonianos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Substância Negra/metabolismo
11.
Mol Neurobiol ; 60(12): 6774-6788, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37480498

RESUMO

Parkinson's disease (PD) is the second most frequent neurodegenerative disease associated with motor dysfunction secondary to the loss of dopaminergic neurons in the nigrostriatal axis. Actual therapy consists mainly of levodopa; however, its long-term use promotes secondary effects. Consequently, finding new therapeutic alternatives, such as neuroprotective molecules, is necessary. Among these alternatives is silybin (Sb), the major bioactive flavonolignan in silymarin. Both exert neuroprotective effects, preserving dopamine levels and dopaminergic neurons when administered in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse PD model, being probably Sb the potential therapeutic molecule behind this effect. To elucidate the role of Sb in the PD model, we determined the dose-dependent conservation of striatal dopamine content following Sb oral administration. Then, we evaluated motor deficit tests using the best dopamine conservative dose of Sb and determined a cytokine-dependent inflammatory profile status, malondialdehyde as an oxidative stress product, and neurotrophic factors content in the MPTP-induced mouse PD model. Our results show that oral Sb at 100 mg/kg dose conserved about 60% dopamine levels. Also, Sb improved motor deficits, preserved neurotrophic factors content and mitochondrial function, reduced lipid peroxidation, diminished proinflammatory cytokines to basal levels, enhanced fractalkine production in the striatum and substantia nigra, and increased IL-10 and IL-4 levels in the substantia nigra in the MPTP mice. Thus, oral Sb may be a potential pharmacological PD treatment alternative.


Assuntos
Intoxicação por MPTP , Doenças Neurodegenerativas , Animais , Camundongos , Citocinas , Silibina/farmacologia , Silibina/uso terapêutico , Fator Neurotrófico Derivado do Encéfalo , Dopamina , Administração Oral , Modelos Animais de Doenças
12.
Mol Neurobiol ; 60(9): 5137-5154, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37266763

RESUMO

Neuroinflammation mediated by brain glial cells is one of the pathological drivers of Parkinson's disease (PD). Recent studies have shown that higher circulating trimethylamine N-oxide (TMAO, a gut microbiota-derived metabolite) can induce neuroinflammation and are strongly related to a variety of central nervous system diseases and adverse brain events. Herein, we explored the effect of pre-existing higher circulating TMAO on dopamine system and neuroinflammation in acute PD model mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydroxypyridine (MPTP). TMAO pretreatment was given by adding 3% (w/v) TMAO to drinking water of mice for 21 days to induce higher circulating TMAO status, then mice were administered with MPTP (20 mg/kg, i.p) for four times in one day to construct an acute PD model mice and treated with TMAO continuously until the end of the experiment. Results demonstrated that TMAO treatment significantly increased serum TMAO levels. Moreover, high serum TMAO significantly increased activation of microglia and astrocytes both in striatum and in substantia nigra. And strikingly, high serum TMAO significantly promoted the metabolism of striatal dopamine (DA) of PD model mice, although it had no significant effect on the number of dopaminergic neurons or the content of DA. Furthermore, immunofluorescence, ELISA, and RT-qPCR results of the hippocampus also showed that high serum TMAO significantly promoted the activation of microglia and astrocytes in the dentate gyrus, increased the levels of TNF-α and IL-1ß, and upregulated gene expression of M1 microglia-related markers (including CD16, CD32, and iNOS) and A2 astrocyte-related markers (including S100a10, Ptx3, and Emp1) in mRNA levels. In summary, we found that pre-existing high serum levels of TMAO worsened the PD-related brain pathology by promoting DA metabolism, aggravating neuroinflammation and regulating glial cell polarization.


Assuntos
Intoxicação por MPTP , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/patologia , Dopamina/metabolismo , Intoxicação por MPTP/metabolismo , Doenças Neuroinflamatórias , Microglia/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
13.
Neuroscience ; 526: 21-34, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37331688

RESUMO

Parkinson's Disease is a synucleinopathy that primarily affects the dopaminergic cells of the central nervous system, leading to motor and gastrointestinal disturbances. However, intestinal peripheral neurons undergo a similar neurodegeneration process, marked by α-synuclein (αSyn) accumulation and loss of mitochondrial homeostasis. We investigated the metabolic alterations in different biometrics that compose the gut-brain axis (blood, brain, large intestine, and feces) in an MPTP-induced mouse model of sporadic Parkinson's Disease. Animals received escalating administration of MPTP. Tissues and fecal pellets were collected, and the metabolites were identified through the untargeted Nuclear Magnetic Resonance spectroscopic (1H NMR) technique. We found differences in many metabolites from all the tissues evaluated. The differential expression of metabolites in these samples mainly reflects inflammatory aspects, cytotoxicity, and mitochondrial impairment (oxidative stress and energy metabolism) in the animal model used. The direct evaluation of fecal metabolites revealed changes in several classes of metabolites. This data reinforces previous studies showing that Parkinson's disease is associated with metabolic perturbation not only in brain-related tissues, but also in periphery structures such as the gut. In addition, the evaluation of the microbiome and metabolites from gut and feces emerge as promising sources of information for understanding the evolution and progression of sporadic Parkinson's Disease.


Assuntos
Microbioma Gastrointestinal , Intoxicação por MPTP , Doença de Parkinson , Transtornos Parkinsonianos , Camundongos , Animais , Doença de Parkinson/metabolismo , Eixo Encéfalo-Intestino , Microbioma Gastrointestinal/fisiologia , Espectroscopia de Ressonância Magnética , Modelos Animais de Doenças
14.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298200

RESUMO

Parkinson's disease (PD) is a disorder that is characterized by progressive and selective neuronal injury and cell death. Recent studies have provided accumulating evidence for a significant role of the immune system and neuroinflammation in PD pathogenesis. On this basis, many scientific articles have highlighted the anti-inflammatory and neuroprotective properties of Antrodia camphorata (AC), an edible fungus containing various bioactive compounds. This study aimed to evaluate the inhibitory effect of AC administration on neuroinflammation and oxidative stress in a murine model of MPTP-induced dopaminergic degeneration. AC (10, 30, 100 mg/kg) was administered daily by oral gavage starting 24 h after the first administration of MPTP, and mice were sacrificed 7 days after MPTP induction. In this study, treatment with AC significantly reduced the alteration of PD hallmarks, increasing tyrosine hydroxylase expression and reducing the number of alpha-synuclein-positive neurons. In addition, AC treatment restored the myelination process of neurons associated with PD and attenuated the neuroinflammatory state. Furthermore, our study demonstrated that AC was able to reduce the oxidative stress induced by MPTP injection. In conclusion, this study highlighted that AC could be a potential therapeutic agent for the treatment of neurodegenerative disorders such as PD.


Assuntos
Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Modelos Animais de Doenças , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Intoxicação por MPTP/metabolismo
15.
Mol Neurobiol ; 60(8): 4778-4794, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37162724

RESUMO

Identification of genetic mutations in Parkinson's disease (PD) promulgates the genetic nature of disease susceptibility. Resilience-associated genes being unknown till date, the normal genetic makeup of an individual may be determinative too. Our earlier studies comparing the substantia nigra (SN) and striatum of C57BL/6J, CD-1 mice, and their F1-crossbreds demonstrated the neuroprotective role of admixing against the neurotoxin MPTP. Furthermore, the differences in levels of mitochondrial fission/fusion proteins in the SN of parent strains imply effects on mitochondrial biogenesis. Our present investigations suggest that the baseline levels of apoptotic factors Bcl-2, Bax, and AIF differ across the three strains and are differentially altered in SN following MPTP administration. The reduction in complex-I levels exclusively in MPTP-injected C57BL/6J reiterates mitochondrial involvement in PD pathogenesis. The MPTP-induced increase in complex-IV, in the nigra of both parent strains, may be compensatory in nature. The ultrastructural evaluation showed fairly preserved mitochondria in the dopaminergic neurons of CD-1 and F1-crossbreds. However, in CD-1, the endoplasmic reticulum demonstrated distinct luminal enlargement, bordering onto ballooning, suggesting proteinopathy as a possible initial trigger.The increase in α-synuclein in the pars reticulata of crossbreds suggests a supportive role for this output nucleus in compensating for the lost function of pars compacta. Alternatively, since α-synuclein over-expression occurs in different brain regions in PD, the α-synuclein increase here may suggest a similar pathogenic outcome. Further understanding is required to resolve this biological contraption. Nevertheless, admixing reduces the risk to MPTP by favoring anti-apoptotic consequences. Similar neuroprotection may be envisaged in the admixed populace of Anglo-Indians.


Assuntos
Intoxicação por MPTP , Doença de Parkinson , Animais , Camundongos , Neurotoxinas/metabolismo , alfa-Sinucleína/metabolismo , Camundongos Endogâmicos C57BL , Substância Negra/patologia , Doença de Parkinson/patologia , Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Intoxicação por MPTP/metabolismo
16.
J Pharmacol Sci ; 152(1): 30-38, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37059489

RESUMO

Parkinson's disease (PD) is characterized by dopaminergic (DAergic) neuronal loss in the substantia nigra pars compacta (SNpc), resulting from α-synuclein (αSyn) toxicity. We previously reported that αSyn oligomerization and toxicity are regulated by the fatty-acid binding protein 3 (FABP3), and the therapeutic effects of the FABP3 ligand, MF1, was successfully demonstrated in PD models. Here, we developed a novel and potent ligand, HY-11-9, which has a higher affinity for FABP3 (Kd = 11.7 ± 8.8) than MF1 (Kd = 302.8 ± 130.3). We also investigated whether the FABP3 ligand can ameliorate neuropathological deterioration after the onset of disease in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinsonism. Motor deficits were observed two weeks after MPTP treatment. Notably, oral administration of HY-11-9 (0.03 mg/kg) improved motor deficits in both beam-walking and rotarod tasks, whereas MF1 failed to improve the motor deficits in both tasks. Consistent with the behavioral tasks, HY-11-9 recovered dopamine neurons from MPTP toxicity in the substantia nigra and ventral tegmental areas. Furthermore, HY-11-9 reduced the accumulation of phosphorylated-serine129-α-synuclein (pS129-αSyn) and colocalization with FABP3 in tyrosine hydroxylase (TH)-positive DA neurons in the PD mouse model. Overall, HY-11-9 significantly improved MPTP-induced behavioral and neuropathological deterioration, suggesting that it may be a potential candidate for PD therapy.


Assuntos
Intoxicação por MPTP , Doença de Parkinson , Transtornos Parkinsonianos , Camundongos , Animais , alfa-Sinucleína/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Ligantes , Transtornos Parkinsonianos/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Substância Negra/metabolismo , Substância Negra/patologia , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Modelos Animais de Doenças , Proteína 3 Ligante de Ácido Graxo/metabolismo
17.
Neurobiol Dis ; 180: 106105, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36977454

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized by the progressive loss of nigrostriatal dopaminergic neurons (DANs), involving the dysregulation of both neurons and glial cells. Cell type- and region-specific gene expression profiles can provide an effective source for revealing the mechanisms of PD. In this study, we adopted the RiboTag approach to obtain cell type (DAN, microglia, astrocytes)- and brain region (substantia nigra, caudate-putamen)-specific translatomes at an early stage in an MPTP-induced mouse model of PD. Through DAN-specific translatome analysis, the glycosphingolipid biosynthetic process was identified as a significantly downregulated pathway in the MPTP-treated mice. ST8Sia6, a key downregulated gene related to glycosphingolipid biosynthesis, was confirmed to be downregulated in nigral DANs from postmortem brains of patients with PD. Specific expression of ST8Sia6 in DANs exerts anti-inflammatory and neuroprotective effects in MPTP-treated mice. Through cell type (microglia vs. astrocyte) and brain region (substantia nigra vs. caudate-putamen) comparisons, nigral microglia showed the most intense immune responses. Microglia and astrocytes in the substantia nigra showed similar levels of activation in interferon-related pathways and interferon gamma (IFNG) was identified as the top upstream regulator in both cell types. This work highlights that the glycosphingolipid metabolism pathway in the DAN is involved in neuroinflammation and neurodegeneration in an MPTP mouse model of PD and provides a new data source for elucidating the pathogenesis of PD.


Assuntos
Intoxicação por MPTP , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , Glicoesfingolipídeos/metabolismo , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças , Substância Negra/metabolismo , Intoxicação por MPTP/patologia
18.
Psychopharmacology (Berl) ; 240(5): 1103-1118, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36881113

RESUMO

RATIONALE: Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder. Increasing evidence suggests the role of the gut-microbiota-brain axis in the pathogenesis of PD. Mesenchymal stem-cell-derived microvesicles (MSC-MVs) have emerged as a therapeutic potential for neurological disorders over the last years. OBJECTIVE: The objective of this study was to investigate whether MSC-MVs could improve PD-like neurotoxicity in mice after administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). RESULTS: MPTP-induced reductions in the dopamine transporter and tyrosine hydroxylase expressions in the striatum and substantia nigra (SNr) were attenuated after a subsequent single administration of MSC-MVs. Increases in the phosphorylated α-synuclein (p-α-Syn)/α-Syn ratio in the striatum, SNr, and colon after MPTP injection were also attenuated after MSC-MVs injection. Furthermore, MSC-MVs restored MPTP-induced abnormalities of the gut microbiota composition. Interestingly, positive correlations between the genus Dubosiella and the p-α-Syn/α-Syn ratio were observed in the brain and colon, suggesting their roles in the gut-microbiota-brain communication. Moreover, MSC-MVs attenuated MPTP-induced reduction of the metabolite, 3,6-dihydroxy-2-[3-methoxy-4-(sulfooxy)phenyl]-7-(sulfinooxy)-3,4-dihydro-2H-1-benzopyran-5-olate, in the blood. Interestingly, a negative correlation between this compound and the p-α-Syn/α-Syn ratio was observed in the brain and colon. CONCLUSIONS: These data suggest that MSC-MVs could ameliorate MPTP-induced neurotoxicity in the brain and colon via the gut-microbiota-brain axis. Therefore, MSC-MVs would have a new therapeutic potential for neurological disorders such as PD.


Assuntos
Microbioma Gastrointestinal , Intoxicação por MPTP , Doença de Parkinson , Animais , Camundongos , Intoxicação por MPTP/terapia , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo , alfa-Sinucleína/uso terapêutico , Encéfalo/metabolismo , Substância Negra/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
19.
Neurobiol Dis ; 180: 106067, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893901

RESUMO

Although Parkinson's disease (PD) key neuropathological hallmarks are well known, the underlying pathogenic mechanisms of the disease still need to be elucidated to identify innovative disease-modifying drugs and specific biomarkers. NF-κB transcription factors are involved in regulating several processes associated with neurodegeneration, such as neuroinflammation and cell death, that could be related to PD pathology. NF-κB/c-Rel deficient (c-rel-/-) mice develop a progressive PD-like phenotype. The c-rel-/- mice present both prodromal and motor symptoms as well as key neuropathological features, including nigrostriatal dopaminergic neurons degeneration, accumulation of pro-apoptotic NF-κB/RelA acetylated at the lysine 310 residue (Ac-RelA(lys310)) and progressive caudo-rostral brain deposition of alpha-synuclein. c-Rel inhibition can exacerbate MPTP-induced neurotoxicity in mice. These findings support the claim that misregulation of c-Rel protein may be implicated in PD pathophysiology. In this study, we aimed at evaluating c-Rel levels and DNA-binding activity in human brains and peripheral blood mononuclear cells (PBMCs) of sporadic PD patients. We analyzed c-Rel protein content and activity in frozen substantia nigra (SN) samples from post-mortem brains of 10 PD patients and 9 age-matched controls as well as in PBMCs from 72 PD patients and 40 age-matched controls. c-Rel DNA-binding was significantly lower and inversely correlated with Ac-RelA(lys310) content in post-mortem SN of sporadic PD cases, when compared to healthy controls. c-Rel DNA-binding activity was also reduced in PBMCs of followed-up PD subjects. The decrease of c-Rel activity in PBMCs from PD patients appeared to be independent from dopaminergic medication or disease progression, as it was evident even in early stage, drug-naïve patients. Remarkably, the levels of c-Rel protein were comparable in PD and control subjects, pointing out a putative role for post-translational modifications of the protein in c-Rel dysfunctions. These findings support that PD is characterized by the loss of NF-κB/c-Rel activity that potentially has a role in PD pathophysiology. Future studies will be aimed at addressing whether the reduction of c-Rel DNA-binding could constitute a novel biomarker for PD.


Assuntos
Intoxicação por MPTP , Doença de Parkinson , Humanos , Camundongos , Animais , NF-kappa B/metabolismo , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Leucócitos Mononucleares/metabolismo , Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismo , Intoxicação por MPTP/patologia
20.
Neurochem Res ; 48(6): 1707-1715, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36602724

RESUMO

Various pharmacological blockers targeting K+ channel have been identified to be related to the treatment of Parkinson's disease (PD). Previous studies showed that 4-Aminopyridine (4-AP), a wide-spectrum K+ channel blocker, was able to attenuate apomorphine-induced rotation in parkinsonism rats, indicating the possible beneficial effects in attenuation of PD motor symptoms. However, it is unclear whether 4-AP exhibits neuroprotective effects against the neurodegeneration of substantia nigra (SN)-striatum system in PD. In this study, the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mouse model was employed to evaluate the neuroprotective effects of 4-AP. Results showed that 4-AP inhibited MPTP-induced dopaminergic neuronal loss in the SN as well as dopamine depletion in the striatum. Behavior indexes of open field test and rotarod test confirmed that 4-AP attenuated MPTP-induced motor deficits. We also showed that 4-AP treatment could significantly attenuate the MPTP-induced increase in malonaldehyde (MDA) levels and decrease in superoxide dismutase (SOD) levels. Additionally, MPTP significantly reduced the Bcl-2 expression and promoted the Caspase-3 activation; 4-AP protected dopaminergic neurons against MPTP-induced neurotoxicity by reversing these changes. These results indicate that 4-AP exerts a neuroprotective effect on dopaminergic neurons against MPTP by decreasing oxidative stress and apoptosis. This provides a promising therapeutic target for the treatment of PD.


Assuntos
Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Ratos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos , Camundongos Endogâmicos C57BL , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/prevenção & controle , Intoxicação por MPTP/induzido quimicamente , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Substância Negra , 4-Aminopiridina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...